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Abstract. Bitmap indices are popular multi-dimensional data struc-
tures for accessing read-mostly data such as data warehouse (DW) ap-
plications, decision support systems (DSS) and on-line analytical pro-
cessing (OLAP). One of their main strengths is that they provide good
performance characteristics for complex adhoc queries and an efficient
combination of multiple index dimensions in one query. Considerable
research work has been done in the area of finite (and low) attribute
cardinalities. However, additional complexity is imposed on the design
of bitmap indices for high cardinality or even non-discrete attributes,
where different optimisation techniques than the ones proposed so far
have to be applied.
In this paper we discuss the design and implementation of bitmap in-
dices for High-Energy Physics (HEP) analysis, where the potential search
space consists of hundreds of independent dimensions. A single HEP
query typically covers 10 to 100 dimensions out of the whole search space.
In this context we evaluated two different bitmap encoding techniques,
namely equality encoding and range encoding. For both methods the
number of bit slices (or bitmap vectors) per attribute is a central opti-
misation parameter. The paper presents some (first) results for choosing
the optimal number of bit slices for multi-dimensional indices with at-
tributes of different value distribution and query selectivity. We believe
that this discussion is not only applicable to HEP but also to DW, DSS
and OLAP type problems in general.1

1 Introduction

One of the big challenges at CERN (the European Organization for Nuclear
Research in Geneva, Switzerland) is the management of the large amount of
1 11th International Conference on Database and Expert Systems Applications DEXA
2000, London, Greenwich, UK, September 2000



data and the complexity of objects that are the results of the HEP experiments.
In particular, sub-atomic particles are accelerated to nearly the speed of light
and then collided. Such collisions are called events and are measured at time
intervals of only 25 nanoseconds for some of the new experiments. According to
[8] around 5 Petabyte of data will be written per year that will be analysed by
some 5,000 physicists around the world over a life span of two to three decades.

Currently physics analysis tasks are based on sequentially scanning the pre-
selected event space, obviously not very efficient for queries with small selectiv-
ities. In this case the usage of a proper multi-dimensional index data structure
accelerates these processes by orders of magnitude.

In the literature on multi-dimensional access methods a variety of indices are
proposed [5] ranging from spatial data access methods like the R-tree [6] or the
BV-tree [4] and its variants to non-spatial data access methods like the Pyramid-
tree [1]. However, all these indices are optimised for transaction processing, i.e.
inserts, updates, deletes, etc. what is not the major need of HEP analysis.

Similar to DW applications and DSSs, HEP data are read-mostly and the
access methods are characterised by multi-dimensional, highly complex queries.
What is more, most of the queries are so called partial range queries where only
a small subset of the whole search space is accessed. Multi-dimensional access
methods like the Pyramid-tree show their best performance characteristics for
full range queries and are thus only sub-optimal for partial range queries.

We therefore propose to use bitmap indices, which are optimised for pro-
cessing complex adhoc queries in read-mostly environments. The basic idea of a
bitmap index is to store one vector of bits per distinct attribute value (e.g. pos-
sible attribute values are colours). Each bit of the value is mapped to a record.
The associated bit is set if and only if the record’s value fulfils the property in
focus (e.g. the respective value of the record is equal to red). [2] [3] [14] stud-
ied different kinds of bitmap encoding techniques but only for discrete values.
However, additional complexity is imposed on the design and implementation of
bitmap indices for non-discrete values since different optimisation techniques to
the ones proposed so far have to be applied.

In this paper we make the following contributions to the research on bitmap
indices:

– Applying bitmap indices to high performance physics experiments.
We give a proof of concept that traditional physics analysis can be consid-
erably improved by bitmap indices (BMIs) and show that this technique is
very efficient for HEP-specific data distributions. What is more, we intro-
duce partitioned equality encoding, which is a variant of equality encoded
bitmap indices as used in [12]. In this case one of the most crucial points is
the choice of the correct number of bins which highly depends on the number
of indexed attributes, i.e. the number of dimensions of our search space.

– Employment and analysis of BMIs on top of an object database managment
system (ODBMS).
In contrast to [12] where bitmap indices are implemented on top of a mass
storage system, we present a first implementation on top of an ODBMS,



namely Objectivity/DB [9] . In addition, we also provide an extensive per-
formance analysis and thus characterise the features of bitmap indices for
HEP, which can be, without loss of generality, directly applied for any read-
mostly environment like DWs and DSSs.

– Studying the impact of non-discrete data values.
Finally, we discuss the impact of partitioned range encoding, which is a new
variant of range encoded bitmap indices [2] and is not covered in the research
community so far.

The paper proceeds as follows. In Section 2 we give a survey of related work
and outline the differences to our approach. In Section 3 and 4 we discuss BMIs
for HEP analysis and how we implemented them on top of an ODBMS. A detailed
evaluation of our index is presented in Section 5 where we elaborate on the
optimal binning of the BMI and apply these results to data distributions which
are very common in HEP analysis. In Section 6 we discuss the impact of range
encoded BMIs and finally conclude our work in Section 7.

2 Survey and Discussion of Related Work

A detailed discussion on designing bitmap indices based on different encoding
schemes is presented in [2] and [3]. In particular, space and time complexities for
so-called equality encoded, range encoded and interval encoded bitmap indices
are evaluated. Equality encoding (Table. 1 (b)) can be regarded as the most
fundamental method that consists of |A| bitmaps (bitmap vectors) where |A| is
the cardinality of the attribute to be indexed on. This type of index is optimal
for exact match queries of the form Qe : v = ai. One sided-range queries like
Q1r : v1op ai where op ∈ {<,≤, >,≥} show the best performance characteristics
with range encoded bitmap indices (Table 2 (b)), which only consist of |A| − 1
bitmap vectors. Finally, interval encoding (Table 2 (c)) consists of |A|

2 bitmap
vectors only and is optimal for two-sided range queries Q2r : v1op ai op v2 where
op ∈ {<,≤, >,≥}. All the optimisation methods presented in their work address
discrete attribute values only. However, since our data are contiguous and thus
do not have finite cardinalities, different optimisation techniques than the ones
proposed so far have to be applied.

Table 1 and 2 depict these different encoding techniques for the same set of
attribute values. According to the terminology of [10] [11] the values in Table 1
(a) are referred to as projection index whereas the other methods are called bit
sliced indices.

One of the major problems of simple bitmap indices, namely handling of large
cardinality domains, is solved in [15] by range-based indices. A bitmap vector
is used to represent a range instead of a distinct value and the entire ranges
are partitioned into equally spaced buckets. As is the case with the approach
described in this paper, range-based indices require additional query processing
time to examine the details of all the records in the matched buckets. However,
a detailed analysis and a possible solution to the problem of the additional



Table 1. a) Projection Index πA and b) Equality Encoding Ei

πA(R) E9 E8 E7 E6 E5 E4 E3 E2 E1 E0

1 4 0 0 0 0 0 1 0 0 0 0
2 3 0 0 0 0 0 0 1 0 0 0
3 4 0 0 0 0 0 1 0 0 0 0
4 5 0 0 0 0 1 0 0 0 0 0
5 7 0 0 1 0 0 0 0 0 0 0
6 8 0 1 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 1
8 0 0 0 0 0 0 0 0 0 0 1
9 4 0 0 0 0 0 1 0 0 0 0
10 8 0 1 0 0 0 0 0 0 0 0
11 6 0 0 0 1 0 0 0 0 0 0
12 7 0 0 1 0 0 0 0 0 0 0

overhead for retrieving data from disk (“sieving out” the matching attribute
values), was still left an open issue.

Table 2. a) Projection Index πA, b) Range Encoding Ri and c) Interval Encoding Ii

πA(R) R8 R7 R6 R5 R4 R3 R2 R1 R0 I4 I3 I2 I1 I0

1 4 1 1 1 1 1 0 0 0 0 1 1 1 1 1
2 3 1 1 1 1 1 1 0 0 0 0 1 1 1 1
3 4 1 1 1 1 1 0 0 0 0 1 1 1 1 1
4 5 1 1 1 1 0 0 0 0 0 1 1 1 1 0
5 7 1 1 0 0 0 0 0 0 0 1 1 0 0 0
6 8 1 0 0 0 0 0 0 0 0 1 0 0 0 0
7 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1
8 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1
9 4 1 1 1 1 1 0 0 0 0 1 1 1 1 1
10 8 1 0 0 0 0 0 0 0 0 1 0 0 0 0
11 6 1 1 1 0 0 0 0 0 0 1 1 1 0 0
12 7 1 1 0 0 0 0 0 0 0 1 1 0 0 0

Another encoding technique based on binary encoding is proposed by [13]
where an attribute value is represented in binary form with only �log2 |A|	
bitmaps. Obviously, the storage overhead is much less for high cardinality at-
tributes when compared to equality encoding or range encoding but even ac-
cording to the authors, an optimal solution for evaluating the queries might not
always exist.

Static and dynamic query optimisation for continuous range selections (i.e.
one-sided and two-sided range queries) and discrete range selections (i.e. queries
of the form v ∈ a and v 
∈ a are presented in [14]. Static query optimisations



are questions concerning the optimal design of bitmaps and algorithms based
on logical reductions. Dynamic query optimisation tries to answer questions on
inclusion and exclusion for bit-sliced and encoded bitmap indices.

Currently the only work on BMIs for HEP is presented in [12]. Their work is
based on a hybrid approach of equality encoded [2] and range-based BMIs [15]
on top of a mass storage system. They also use bitmaps for their query optimiser
to provide a quick estimate of the size of the requested data. However, an answer
to the optimisation problem of the central optimisation parameters for designing
a BMI for HEP, namely the optimal number of buckets (or bit slices), was not
given yet.

3 Bitmap Indices for HEP

The typical query profile of physicists who wish to retrieve data for their anal-
yses can be regarded as partial range queries, i.e. queries that do not cover all
dimensions of the whole search space and thus only a subset of all dimensions
of the data is retrieved. What is more, data are read-mostly and skewed.

In our prototype implementation we created a bitmap index for HEP data
comprising 106 objects, i.e. 1 million events with up to 20 independent attributes.
This can be regarded as an index table with a length of 106 and a width of 20.
We assume that the order of the objects, that are stored in the index, does not
change.

Similar to [12] we also use a hybrid approach of equality encoded [2] and
range-based BMIs that we call partitioned equality encoding or short equality
encoding. The properties or attributes are partitioned into bins, for example the
attribute energy can be binned into several ranges like [0;20) GeV (Giga electron
Volt), [20;40) GeV, etc. Afterwards, a bit slice is assigned to each bin, whereas 1
means that the value for the particular event falls into this bin and 0 otherwise.

The steps for performing a two-sided range query of the form Q2r : v1op ai

op v2 where op ∈ {<,≤, >,≥} are as follows. First, the query range has to be
interpreted in terms of bins. Thus, we can easily compute how many bins need
to be scanned for answering our query. Since each bin represents a range rather
than a distinct value, the edge bins are so called “critical” bins, that might only
be partially covered by the query condition. In order to “sieve” out the correct
events from the candidate slices, we need to fetch the event data from disk and
check the attribute value against the query condition. We refer to this as the
“candidate check overhead” that makes the index highly I/O bound for a large
number of candidates in the two candidate slices. Those slices that are covered
100% by the query range, are called hit slices. In this case all events that are
represented by this slice are hits and do not need any additional checking. A
typical example of a two-sided range query with 2 candidate slices and 1 hit
slice is depicted in Fig. 1.
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Fig. 1. Two sided-range query on a partitioned equality encoded HEP-BMI

4 Implementation on Objectivity/DB

Basis for our implementation is Objectivity/DB, which is a distributed object
database management system for high performance, high availability multi-
tier applications. Objectivity/DB provides a robust, scalable multi-threaded
database engine. Both the event data and the BMI are implemented in separate
databases under one federation which in turn is the highest level of abstraction
in Objectivity/DB and allows to be accessed physically distributed databases.
From the point of view of the programmer, the whole database system is one
logical unit. The main architectural aspects are depicted in Fig. 2.
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Fig. 2. Architectural overview of the BMI on top of Objectivity/DB

Any object in Objectivity/DB can be directly accessed by its object identifier
(OID) which we use for keeping track of the event data. In particular, each
physics event is stored as an object and can thus be directly accessed via its
OID. This step is necessary, for example, for checking the candidate slices.



As we can see on the right side of Fig. 2, one OID-list is maintained in
addition to the BMI. For instance, if we want to check the event at position x,
we simply refer to the OID list at position x and fetch the event from disk for
checking the attribute value against the query condition.

5 Justification of the BMI Approach

We carried out our benchmarks on a Pentium II 400 under Linux Red Hat 5.1.
The BMI is implemented on top of Objectivity/DB version 5.1.2. Throughout
the rest of this paper all experiments operate on 106 events.

5.1 Optimal Binning - Space/Time Complexity

The right number of bit slices (bins) can be regarded as one of the “key pa-
rameter” of this kind of bitmap index. A detailed discussion on the behaviour
of the BMI with a different number of bins and a different number of indexed
attributes is vital for the understanding of BMIs for HEP. To the best knowledge
of the authors, this kind of investigation has not been done before for the special
needs of HEP data and DW applications in general. The main motivation was
a similar implementation of BMIs presented in [12] where 20 bins were chosen.
However, no analysis or justification for this “key parameter” is given.

We will first elaborate on the optimal number of bins for queries against 1
indexed attribute and later extend our analysis onto 2, 10 and 20 attributes -
that can be summarised as the “most characteristic” use cases of end-user physics
analysis in HEP. For simplicity we base our analysis on uniformly distributed
data since this gives us the best insight into the performance of the index. Again
the domain selectivity σdom = 100%.

As we can see from Fig.3, the optimal binning highly depends on the number
of dimensions, that are covered by the range query. Generally speaking we can
conclude that the higher the search space, that is covered by the query, the
higher is the number of bins for an optimal query performance.

Let us first analyse the graph for queries over one dimension. As we might
expect, the performance is worse for 2 bins since both of them are candidates and
hence need to be checked against the query constraint. In this case, all events
must be fetched from disk. By increasing the number of bins, the number of
candidates in the candidate slices gets lower and thus the I/O spent on fetching
events from disk is reduced. However, at the same time a larger number of bit
slices has to be scanned for performing the Boolean operations on them. The
optimal number of bins can be found at that point where these two effects offset
each other.

The same effect can be found for higher dimensional queries with the slight
difference that the optimum moves to the right, i.e. higher number of bins, due
to the higher number of candidates in the candidate slices for a higher number of
bins. Obviously, for 2 bins the number of candidates is the same for all dimensions
but this number decreases more slowly as the number of dimensions and bins
increases.



0 50 100 150 200 250
0

10

20

30

40
1 Dimension

Number of bins

T
im

e 
[s

ec
]

0 50 100
0

10

20

30

40
2 Dimensions

Number of bins

T
im

e 
[s

ec
]

0 50 100
0

10

20

30

40

50

60
10 Dimensions

Number of bins

T
im

e 
[s

ec
]

0 20 40 60 80
0

20

40

60

80
20 Dimensions

Number of bins

T
im

e 
[s

ec
]

Fig. 3. Optimal binning for queries over various dimensions

5.2 Different Distributions of Physics Data

After studying the behaviour of the BMI on event data following a uniform
distribution, we will now motivate our implementation by applying it to typical
data distributions that can be found in HEP. During this section we demonstrate
the advantage of our index data structure for HEP analysis over conventional
methods.

A great majority of physics data follows a Gauss or exponential distribution.
Driven by the needs of physics analysis, we studied the behaviour of our BMI
on a Gauss distribution with the parameters µ = 0 and σ = 1, and on an
exponential distribution with the parameter λ = 1. The number of bins is set
to 32 and the number of dimensions covered by the query is 10. The results are
summarised in Fig. 4
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In both figures a schematic view of the underlying data distribution is given.
The horizontal bars indicate the domain selectivity of the query whereas the
percentage on the bars refers to the selectivity of the candidate objects. In addi-
tion, the time for executing the query is given. As we can see in the figures the
query time highly depends on the selectivity of the candidate objects and not
on the domain selectivity.

The performance of the BMI is highest for the “lower end” of highly skewed
data (e.g. the right most events that follow an exponential distribution). How-
ever, we also have to point out the poor performance of range queries at the
“higher end” (worst case).

One possible optimisation for reducing the negative effects of the worst case
would be a dynamic binning that adopts to the distribution of the event data.
Since in most cases the access patterns of physics analysis are characterised by
range queries around the “lower end” of the event data, our current implemen-
tation proofed to be the most promising approach for the HEP experiments at
CERN.

6 Partitioned Range Encoding

Since one-sided range queries (Q1r) are the most common kind of query in HEP,
we also analysed range encoding [2] that performs considerably better than equal-
ity encoding. In contrast to [2] who based their optimisation techniques on dis-
crete attribute values (where the problem of candidate and hit slices does not
occur), we apply this method to contiguous values and thus a new optimisation
method has to be considered. We refer to our approach as partitioned range
encoding or in short range encoding.

The main advantage over equality encoded BMIs is that in the worst case
only one bit slice has to be scanned for one-sided range queries per dimension
(independent of the selectivity of the query). As for equality encoded bitmaps,
all bit slices have to be scanned.

Since we have already studied the behaviour of equality encoded BMIs and
raised the I/O problem of candidate slices, we can easily conclude from these
observations on the impact of range encoding. As already mentioned, in the worst
case one bit slice needs to be scanned for one-sided range queries per dimension.
This also implies that we have to consider only one candidate slice and no hit
slice at all.

Let us analyse the performance characteristics of one-sided range queries
with both equality encoded and range encoded BMIs with variable selectivi-
ties, 106 objects and 10 indexed attributes. Again we studied the performance
characteristics of the BMI on uniformly distributed data.

As we can see in Fig. 5, the query time for equality encoded BMIs increases
with increasing selectivities (i.e. a higher number of hit slices has to be read)
whereas the query time for range encoded BMIs is more or less constant for all
selectivities (since no hit slices at all have to be scanned).
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The fact that only one bit slice needs to be scanned gives us much more
freedom in extending the number of bins until the theoretical maximum of the
cardinality of the attribute value. Since we are dealing with contiguous values,
we do not have a finite cardinality and hence are mainly “restricted” by the
space complexity. We thus end up in a “practical” optimisation problem, that is
constraint by the available disk space.

Experimentally we can show that the behaviour of a range encoded BMI
both for Q1r and Q2r corresponds to a partial scan over the event data. The
performance characteristics are thus highly dependent on the characteristics of
the underlying OODBMS, namely Objectivity/DB and the disk. In particular,
for page selectivities between 5% and 100%, the read rate is almost linear. How-
ever, a significant speedup is achieved, if the page selectivity is smaller than 5%
[7] which in turn is very common for multi-dimensional range queries in HEP
analysis.

7 Conclusion

We have given performance studies of BMI for HEP data and pointed out the
main difference to other studies on BMI - those that concentrated on only dis-
crete attribute values. The main bottleneck has been shown to be the checking
of the candidate slices due to the additional I/O for fetching the event data from
disk in addition to the I/O for the BMI.

We have designed and implemented our BMI on top of a commercial ob-
ject database management system, namely Objectivity/DB and used different
bitmap encoding techniques and different data distributions for our analysis. As
for partitioned equality encoding and uniformly distributed data we solved the
”candidate-bottleneck” by increasing the number of bins and came to an optimal
query performance. This optimum can be regarded as a trade-off between a high
number of candidates and consequently more I/O on the event data vs. a low
number of candidates and therefore a higher number of bins.

Since HEP queries are mainly one-sided range queries, we also studied par-
titioned range encoding where we discussed a completely new problem, namely



the behaviour of the BMI on attributes with infinite cardinality (as it is true for
non-discrete values). We showed that the performance of range encoded BMIs
clearly outperforms equality encoded BMI. However, there is no ”optimal” num-
ber of bins, as is the case for equality encoded BMI. This gives the designer of
BMI for HEP data a high degree of freedom since the number of bins (and indi-
rectly the number of candidates) and thus the performance of the entire index
is ”only” restricted by the capacity of the storage space.
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